Adequate sets of connectives for LTL

X is completely orthogonal to the other connectives

- X does not help in defining any of the other connectives.
- The other way is neither possible

Each of the sets $\{U,X\}$, $\{R,x\}$, $\{W,X\}$ is adequate

- {U,X} $\circ \quad \phi \ R \ \psi \equiv \neg \left(\neg \phi \ U \ \neg \psi \right)$ \bullet {R,X} \circ $\phi U \psi \equiv \neg (\neg \phi R \neg \psi)$ $\circ \quad \phi \ \mathbf{W} \ \psi \equiv \psi \ \mathbf{R} \ (\ \phi \ \mathbf{C} \ \psi)$ • {W,X}
- $\circ \quad \phi \cup \Psi \equiv \neg (\neg \phi R \neg \Psi)$ $\circ \quad \phi R \psi \equiv \psi W (\phi \mathcal{A} E \psi)$

Theorem:

$$U \psi \equiv \neg (\neg \psi U (\neg \phi \cancel{E} \neg \psi)) \cancel{E} F \psi$$

Proof: take any path s Proof: take any path s $0 \rightarrow s1 \rightarrow s2 \rightarrow in$ any model $0 \rightarrow s1 \rightarrow s2 \rightarrow ...$ in any model

- Suppose s 0 ² φ U ψ
 - \circ Let n be the smallest smallest number s.t. sn 2 ψ
 - \circ We know that such n exists from φ U ψ. Thus, s0 ² F ψ
 - O For each k < n, $sk^2 φ$ since φ U ψ
 - We need to show s $0^2 \neg (\neg \psi U (\neg \phi \cancel{E} \neg \psi))$
 - o case 1: for all i, si $2 \neg \varphi \cancel{E} \neg \psi$. Then, s0 $^2 \neg (\neg \psi \cup (\neg \varphi \cancel{E} \neg \psi))$
 - o case 2: for some i s case 2: for some i, si $^2 \neg \varphi \cancel{E} \neg \psi$. Then we need to show Then, we need to show
 - o (*) for each i >0, if si $^2 \neg \varphi \not E \neg \psi$, then there is some j < i with sj $^2 \neg \psi$ (i.e. si $^2 \psi$)
 - O Take any i >0 with si $^2 \neg \phi \cancel{E} \neg \psi$. We know that i > n since s0 $^2 \phi U \psi$. So we can take j=n and have sj 2 ψ
 - o Conversely, suppose s $0^2 \neg (\neg \psi U (\neg \phi E \neg \psi)) E F \psi$
 - O Since s0 2 F ψ , we have a minimal n as before s.t. sn 2 ψ
 - case 1: for all i, si $2 \neg \varphi \cancel{E} \neg \psi$ (i.e. si $^2 \varphi \not C \psi$). Then s0 $^2 \varphi U \psi$
 - case 2: for some i s $^2 \varphi \cancel{E} \psi$ We need to prove for any i \leq i